

FLEXIBLE RUBBER JOINT

Twin-Sphere Rubber Joint with Floating Flanges

Fig.GFLEX-F2

Features

Fit for suction and delivery (discharge)

Additional Features and Benefits

- 1. Additional gaskets and/or packing are not required.
- 2. Simplified installation in all piping systems using easy alignment flanges.
- 3. Ability to absorb considerable elongation and compression of pipes caused by temperature changes prevents piping system breaks and equipment down time.
- 4. Absorbs the force created by pulsating water and reduces the effect of water hammer.

Typical Applications

- 1.Cold and warm water pressure piping systems in commercial and industrial buildings and plants.
- 2. Pump and turbine piping used for power generation plants, industrial machinery and pump blowers.
- 3. Feed-water and drainage piping for water, wastewater, and sanitary system.

Note: FLEXIBLE RUBBER JOINT is not applicable for use with oil, air gases, hot water supply lines and with pool water.

FLEXIBLE RUBBER JOINT

Twin-Sphere Rubber Joint with Floating Flanges

Materials

No.	Parts	Materials
1	Flange	Ductile Iron (32 - 300)
	i ialiy c	Mild Steel (350-600)
2	Reinforcing Ring	Carbon Steel
3	Inner Rubber	EPDM
4	Outer Rubber	EPDM
5	Reinforcing Cord	Nylon

Flanges on ANSI, BS, etc. available. The flange material can be changed to Mild Steel, SUS304 and SUS316. Please consult us. JIS16K / JIS20K Flanges are all Mild steel (32~600).

Technical Parameters

Size	DN32-DN600
Working Pressure	1.6Mpa
Bursting Pressure	4.8Mpa
Vaculty	500 mmHg

Dimensions and Allowable Movements

Nominal Dia. (A)		Dimensions(mm)		Mass(kg)	Allowable Movements (mm)				Installation Tolerances(mm)				
DN	Inch	L	≅A	≅D	Mass(kg)	T.M.	A.E.	A.C.	A.M.([○])	T.M.	A.E.	A.C.	A.M.(⁰)
32	1-1/4	175	76	40	2.9	20	10	20	30	8	3	6	10
40	1-1/2	175	76	40	3.3	20	10	20	30	8	3	6	10
50	2	175	86	50	3.9	20	10	20	30	8	3	6	10
65	2-1/2	175	106	65	5.2	20	10	20	30	8	3	6	10
80	3	175	120	76	5.3	20	10	20	30	8	3	6	10
100	4	225	150	100	6.8	25	15	30	30	10	3	6	10
125	5	225	180	125	10	25	15	30	30	10	3	6	10
150	6	225	212	150	14	25	15	30	30	10	3	6	10
200	8	325	260	200	18	30	20	40	30	12	3	6	10
250	10	325	324	250	27	30	20	40	30	12	3	6	10
300	12	325	372	300	30	30	20	40	30	12	3	6	10
350	14	345	415	300	36	30	20	40	30	12	3	6	10
400	16	345	466	300	47	30	20	40	30	12	3	6	10
450	18	345	526	300	53	30	20	40	30	12	3	6	10
500	20	345	575	300	63	30	20	40	30	12	3	6	10
600	24	360	690	300	85	30	20	40	30	12	3	6	10

T.M.=Transverse Movement A.E.=Axial Elongation

A.C.=Axial Compression A.M.=Angular Movement

Mass is only for reference.

Use the products within the given allowable movements.

Tolerance for installation are included in the allowable movements (Allowable movments=Toleances for installation+Operating movements) Please note that information in the above table are for single movement only. In case of complex movements. Some correction is required.

FLEXIBLE RUBBER JOINT

Twin-Sphere Rubber Joint with Floating Flanges

Operating Conditions

Control Unit

Use of the Control Unit option is recommended for the following conditions:

- 1. Adequate piping support can not be provided to counteract pressure forces.
- 2. Whenever transverse movement is expected that may exceed design specifications.
- 3. If there is a possibility that the joint will operate in a compression mode.

Notes

1. Information in the above table is for single movement only. In case of complex movement, follow the below expression.

 $C.EL(C) = A.EL(C) \times \left\{ 1 - \left(\frac{A.T.M. - T.M.}{A.T.M.} \times \frac{A.A.M. - A.M.}{A.A.M.} \right) \right\}$

C.EL(C) = Correct Elongation(Compression)

A.EL(C) = Allowable Elongation(Compression)

A.T.M. = Allowable Transverse Movement

T.M =Transverse Movement

A.A.M. = Allowable Angular Movement

A.M. = Angular Movement

- 2. Install the joint according to the specified allowable dimensions.
- 3. Check suitability of joint to operating conditions prior to installation.
- 4. Prior to installation, check for cracks on the rubber body surface, especially after extended storage.
- 5. If there is movement in the joint, insure that the rubber joint body is not damaged by external objects.
- 6. Keep joint away from all sources of heat. If necessary, cover the joint with a protective sheet to restrict damage caused by welding sparks, grinding, etc.
- 7. Avoid contact of the rubber body with oils, fats, organic solvents (thinner, toluene, etc.), acid or alkali. Wipe immediately if rubber is contaminated with these items.
- 8. Secure piping before and after joint to limit elongation of the joint during operation.